Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Commun Biol ; 7(1): 378, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548821

RESUMO

A defining feature of biology is the use of a multiscale architecture, ranging from molecular networks to cells, tissues, organs, whole bodies, and swarms. Crucially however, biology is not only nested structurally, but also functionally: each level is able to solve problems in distinct problem spaces, such as physiological, morphological, and behavioral state space. Percolating adaptive functionality from one level of competent subunits to a higher functional level of organization requires collective dynamics: multiple components must work together to achieve specific outcomes. Here we overview a number of biological examples at different scales which highlight the ability of cellular material to make decisions that implement cooperation toward specific homeodynamic endpoints, and implement collective intelligence by solving problems at the cell, tissue, and whole-organism levels. We explore the hypothesis that collective intelligence is not only the province of groups of animals, and that an important symmetry exists between the behavioral science of swarms and the competencies of cells and other biological systems at different scales. We then briefly outline the implications of this approach, and the possible impact of tools from the field of diverse intelligence for regenerative medicine and synthetic bioengineering.


Assuntos
Inteligência , Resolução de Problemas , Animais , Inteligência/fisiologia , Bioengenharia , Medicina Regenerativa , Biologia
2.
Nat Commun ; 15(1): 535, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233424

RESUMO

Information for organismal patterning can come from a variety of sources. We investigate the possibility that instructive influences for normal embryonic development are provided not only at the level of cells within the embryo, but also via interactions between embryos. To explore this, we challenge groups of embryos with disruptors of normal development while varying group size. Here, we show that Xenopus laevis embryos are much more sensitive to a diverse set of chemical and molecular-biological perturbations when allowed to develop alone or in small groups, than in large groups. Keeping per-embryo exposure constant, we find that increasing the number of exposed embryos in a cohort increases the rate of survival while incidence of defects decreases. This inter-embryo assistance effect is mediated by short-range diffusible signals and involves the P2 ATP receptor. Our data and computational model emphasize that morphogenesis is a collective phenomenon not only at the level of cells, but also of whole bodies, and that cohort size is a crucial variable in studies of ecotoxicology, teratogenesis, and developmental plasticity.


Assuntos
Cálcio , Teratogênicos , Humanos , Gravidez , Animais , Feminino , Teratogênicos/toxicidade , Cálcio/farmacologia , Morfogênese , Transdução de Sinais , Xenopus laevis , Trifosfato de Adenosina/farmacologia , Embrião não Mamífero
3.
Methods Mol Biol ; 2745: 91-102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38060181

RESUMO

Fluorescent lifetime imaging (FLIM) is a powerful tool for visualizing physiological parameters in vivo. We present here a 3-dye strategy for mapping bioelectric patterns in living Xenopus laevis embryos leveraging the quantitative power of fluorescent lifetime imaging. We discuss a general strategy for disentangling physiological artifacts from true bioelectric signals, a method for dye delivery via transcardial injection, and how to visualize and interpret the fluorescent lifetime of the dyes in vivo.


Assuntos
Corantes , Fenômenos Eletrofisiológicos , Animais , Potenciais da Membrana/fisiologia , Xenopus laevis/fisiologia , Corantes Fluorescentes , Imagem Óptica/métodos
4.
Front Cell Dev Biol ; 11: 1087650, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645245

RESUMO

Morphogenesis, the establishment and repair of emergent complex anatomy by groups of cells, is a fascinating and biomedically-relevant problem. One of its most fascinating aspects is that a developing embryo can reliably recover from disturbances, such as splitting into twins. While this reliability implies some type of goal-seeking error minimization over a morphogenic field, there are many gaps with respect to detailed, constructive models of such a process. A common way to achieve reliability is negative feedback, which requires characterizing the existing body shape to create an error signal-but measuring properties of a shape may not be simple. We show how cells communicating in a wave-like pattern could analyze properties of the current body shape. We then describe a closed-loop negative-feedback system for creating reaction-diffusion (RD) patterns with high reliability. Specifically, we use a wave to count the number of peaks in a RD pattern, letting us use a negative-feedback controller to create a pattern with N repetitions, where N can be altered over a wide range. Furthermore, the individual repetitions of the RD pattern can be easily stretched or shrunk under genetic control to create, e.g., some morphological features larger than others. This work contributes to the exciting effort of understanding design principles of morphological computation, which can be used to understand evolved developmental mechanisms, manipulate them in regenerative-medicine settings, or engineer novel synthetic morphology constructs with desired robust behavior.

5.
Int J Mol Sci ; 24(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446299

RESUMO

Breast cancer is a complex and heterogeneous disease that displays diverse molecular subtypes and clinical outcomes. Although it is known that the location of tumors can affect their biological behavior, the underlying mechanisms are not fully understood. In our previous study, we found a differential methylation profile and membrane potential between left (L)- and right (R)-sided breast tumors. In this current study, we aimed to identify the ion channels responsible for this phenomenon and determine any associated phenotypic features. To achieve this, experiments were conducted in mammary tumors in mice, human patient samples, and with data from public datasets. The results revealed that L-sided tumors have a more depolarized state than R-sided. We identified a 6-ion channel-gene signature (CACNA1C, CACNA2D2, CACNB2, KCNJ11, SCN3A, and SCN3B) associated with the side: L-tumors exhibit lower expression levels than R-tumors. Additionally, in silico analyses show that the signature correlates inversely with DNA methylation writers and with key biological processes involved in cancer progression, such as proliferation and stemness. The signature also correlates inversely with patient survival rates. In an in vivo mouse model, we confirmed that KI67 and CD44 markers were increased in L-sided tumors and a similar tendency for KI67 was found in patient L-tumors. Overall, this study provides new insights into the potential impact of anatomical location on breast cancer biology and highlights the need for further investigation into possible differential treatment options.


Assuntos
Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/patologia , Antígeno Ki-67 , Mama/patologia
6.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36076979

RESUMO

There is a growing appreciation in the fields of cell biology and developmental biology that cells collectively process information in time and space. While many powerful molecular tools exist to observe biophysical dynamics, biologists must find ways to quantitatively understand these phenomena at the systems level. Here, we present a guide for the application of well-established information theory metrics to biological datasets and explain these metrics using examples from cell, developmental and regenerative biology. We introduce a novel computational tool named after its intended purpose, calcium imaging, (CAIM) for simple, rigorous application of these metrics to time series datasets. Finally, we use CAIM to study calcium and cytoskeletal actin information flow patterns between Xenopus laevis embryonic animal cap stem cells. The tools that we present here should enable biologists to apply information theory to develop a systems-level understanding of information processing across a diverse array of experimental systems.


Assuntos
Cálcio , Teoria da Informação , Animais , Biofísica , Morfogênese , Transdução de Sinais , Xenopus laevis
7.
Front Cell Dev Biol ; 9: 739024, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621752

RESUMO

Cellular communication is important in all aspects of tissue and organism functioning, from the level of single cells, two discreet populations, and distant tissues of the body. Long distance communication networks integrate individual cells into tissues to maintain a complex organism during development, but when communication between cells goes awry, disease states such as cancer emerge. Herein we discuss the growing body of evidence suggesting that communication methods known to be employed by neurons, also exist in other cell types. We identify three major areas of long-distance communication: bioelectric signaling, tunneling nanotubes (TNTs), and macrophage modulation of networks, and draw comparisons about how these systems operate in the context of development and cancer. Bioelectric signaling occurs between cells through exchange of ions and tissue-level electric fields, leading to changes in biochemical gradients and molecular signaling pathways to control normal development and tumor growth and invasion in cancer. TNTs transport key morphogens and other cargo long distances, mediating electrical coupling, tissue patterning, and malignancy of cancer cells. Lastly macrophages maintain long distance signaling networks through trafficking of vesicles during development, providing communication relays and priming favorable microenvironments for cancer metastasis. By drawing comparisons between non-neural long distance signaling in the context of development and cancer we aim to encourage crosstalk between the two fields to cultivate new hypotheses and potential therapeutic strategies.

8.
J Mol Biol ; 432(2): 605-620, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31711960

RESUMO

Although chemical signaling during embryogenesis is readily addressed by a plethora of available techniques, the developmental functions of ionic signaling are still poorly understood. It is increasingly realized that bioelectric events in nonneural cells are critical for pattern regulation, but their study has been hampered by difficulties in monitoring and manipulating them in vivo. Recent developments in visualizing electrical signaling dynamics in the field of neuroscience have facilitated functional experiments that reveal instructive developmental bioelectric signals. However, there is a pressing need for additional tools to explore time-dependent ionic signaling to understand complex endogenous dynamics. Here, we present methodological advances, including 4D imaging and data analysis, for improved tracking of calcium flux in the Xenopus laevis embryo, lowering the barrier for in vivo physiology work in this important model system. Using these techniques, we investigated the relationship between bioelectric ion channel activity and calcium, finding that cell hyperpolarization and depolarization both induce persistent static elevation of cytoplasmic calcium levels that fade over developmental time. These calcium changes correlate with increased cell mobility in early embryos and abnormal craniofacial morphology in later embryos. We thus highlight membrane potential modulation as a tractable tool for modulation of signaling cascades that rely on calcium as a transduction mechanism. The methods we describe facilitate the study of important novel aspects of developmental physiology, are extendable to numerous classes of existing and forthcoming fluorescent physiological reporters, and establish highly accessible, inexpensive protocols for their investigation.


Assuntos
Fenômenos Eletrofisiológicos/genética , Desenvolvimento Embrionário/genética , Metabolismo Energético , Xenopus laevis/fisiologia , Animais , Cálcio/metabolismo , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/fisiologia , Transporte de Íons/genética , Potenciais da Membrana , Transdução de Sinais/genética , Xenopus laevis/genética
9.
Development ; 145(19)2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30126906

RESUMO

Regeneration of damaged body parts requires coordination of size, shape, location and orientation of tissue with the rest of the body. It is not currently known to what extent injury sites communicate with the remaining soma during repair, or what information may emanate from the injury site and reach other regions. We examined the bioelectric properties (resting potential gradients in the epidermis) of Xenopus laevis froglets undergoing hindlimb amputation and observed that the contralateral (undamaged) limb exhibits apparent depolarization signals immediately after the opposite hindlimb is amputated. The pattern of depolarization matches that of the amputated limb and is correlated to the position and type of injury, revealing that information about damage is available to remote body tissues and is detectable non-invasively in vivo by monitoring the bioelectric state. These data extend knowledge about the electrophysiology of regenerative response, identify a novel communication process via long-range spread of injury signaling, a phenomenon that we call bioelectric injury mirroring, and suggest revisions both to regenerative medicine and diagnostic strategies that are focused entirely on the wound site, and to the use of contralateral limbs as controls.


Assuntos
Fenômenos Eletrofisiológicos , Membro Posterior/fisiologia , Regeneração/fisiologia , Xenopus laevis/fisiologia , Potenciais de Ação , Amputação Cirúrgica , Animais , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Proteínas de Xenopus/metabolismo
10.
Curr Biol ; 26(4): 542-9, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26853361

RESUMO

Differential cadherin (Cdh) expression is a classical mechanism for in vitro cell sorting. Studies have explored the roles of differential Cdh levels in cell aggregates and during vertebrate gastrulation, but the role of differential Cdh activity in forming in vivo tissue boundaries and boundary extracellular matrix (ECM) is unclear. Here, we examine the interactions between cell-cell and cell-ECM adhesion during somitogenesis, the formation of the segmented embryonic precursors of the vertebral column and musculature. We identify a sawtooth pattern of stable Cdh2 adhesions in which there is a posterior-to-anterior gradient of stable Cdh2 within each somite, while there is a step-like drop in stable Cdh2 along the somite boundary. Moreover, we find that the posterior somite boundary cells with high levels of stable Cdh2 have the most columnar morphology. Cdh2 is required for maximal cell aspect ratio and thus full epithelialization of the posterior somite. Loss-of-function analysis also indicates that Cdh2 acts with the fibronectin (FN) receptor integrin α5 (Itgα5) to promote somite boundary formation. Using genetic mosaics, we demonstrate that differential Cdh2 levels are sufficient to induce boundary formation, Itgα5 activation, and FN matrix assembly in the paraxial mesoderm. Elevated cytoskeletal contractility is sufficient to replace differential Cdh2 levels in genetic mosaics, suggesting that Cdh2 promotes ECM assembly by increasing cytoskeletal and tissue stiffness along the posterior somite boundary. Throughout somitogenesis, Cdh2 promotes ECM assembly along tissue boundaries and inhibits ECM assembly in the tissue mesenchyme.


Assuntos
Caderinas/genética , Morfogênese , Somitos/embriologia , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Caderinas/metabolismo , Matriz Extracelular/metabolismo , Mesoderma/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
11.
Curr Opin Cell Biol ; 36: 48-53, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26189063

RESUMO

In this review, we highlight recent re-evaluations of the classical cell sorting models and their application to understanding embryonic morphogenesis. Modern genetic and biophysical techniques reveal that tissue self-assembly is not solely a result of differential adhesion, but rather incorporates dynamic cytoskeletal tension and extracellular matrix assembly. There is growing evidence that these biomechanical modules cooperate to organize developing tissues. We describe the contributions of Cadherins and Integrins to tissue assembly and propose a model in which these very different adhesive regimes affect the same outcome through separate but convergent mechanisms.


Assuntos
Comunicação Celular , Matriz Extracelular/metabolismo , Animais , Caderinas/metabolismo , Adesão Celular , Forma Celular , Integrinas/metabolismo
12.
Dev Cell ; 34(1): 33-44, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26096733

RESUMO

The diverse morphologies of animal tissues are underlain by different configurations of adherent cells and extracellular matrix (ECM). Here, we elucidate a cross-scale mechanism for tissue assembly and ECM remodeling involving Cadherin 2, the ECM protein Fibronectin, and its receptor Integrin α5. Fluorescence cross-correlation spectroscopy within the zebrafish paraxial mesoderm mesenchyme reveals a physical association between Integrin α5 on adjacent cell membranes. This Integrin-Integrin complex correlates with conformationally inactive Integrin. Cadherin 2 stabilizes both the Integrin association and inactive Integrin conformation. Thus, Integrin repression within the adherent mesenchymal interior of the tissue biases Fibronectin fibrillogenesis to the tissue surface lacking cell-cell adhesions. Along nascent somite boundaries, Cadherin 2 levels decrease, becoming anti-correlated with levels of Integrin α5. Simultaneously, Integrin α5 clusters and adopts the active conformation and then commences ECM assembly. This cross-scale regulation of Integrin activation organizes a stereotypic pattern of ECM necessary for vertebrate body elongation and segmentation.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Integrinas/metabolismo , Somitos/metabolismo , Animais , Caderinas/metabolismo , Adesão Celular/fisiologia , Membrana Celular/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
13.
Curr Opin Genet Dev ; 32: 106-11, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25796079

RESUMO

England's King Richard III, whose skeleton was recently discovered lying ignobly beneath a parking lot, suffered from a lateral curvature of his spinal column called scoliosis. We now know that his scoliosis was not caused by 'imbalanced bodily humors', rather vertebral defects arise from defects in embryonic elongation and segmentation. This review highlights recent advances in our understanding of post-gastrulation biomechanics of the posteriorly advancing tailbud and somite morphogenesis. These processes are beginning to be deciphered from the level of gene networks to a cross-scale physical model incorporating cellular mechanics, the extracellular matrix, and tissue fluidity.


Assuntos
Padronização Corporal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Redes Reguladoras de Genes/fisiologia , Modelos Biológicos , Morfogênese/fisiologia , Somitos/embriologia , Vertebrados/embriologia , Animais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Matriz Extracelular/fisiologia , Humanos , Notocorda/embriologia
14.
Am J Physiol Endocrinol Metab ; 291(5): E982-94, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16772326

RESUMO

Accumulation of intracellular lipid may contribute to defective insulin secretion in type 2 diabetes. Although Zucker diabetic fatty (ZDF; fa/fa) rat islets are fat-laden and overexpress the lipogenic master gene, sterol regulatory element binding protein 1c (SREBP-1c), the contribution of SREBP-1c to the secretory defects observed in this model remains unclear. Here we compare the gene expression profile of lean control (fa/+) and ZDF rat islets in the absence or presence of dominant-negative SREBP-1c (SREBP-1c DN). ZDF islets displayed elevated basal insulin secretion at 3 mmol/l glucose but a severely depressed response to 17 mmol/l glucose. While SREBP-1c DN reduced basal insulin secretion from ZDF islets, glucose-stimulated insulin secretion was not improved. Of 57 genes differentially regulated in ZDF islets and implicated in glucose metabolism, vesicle trafficking, ion fluxes, and/or exocytosis, 21 were upregulated and 5 were suppressed by SREBP-1c DN. Genes underrepresented in ZDF islets were either unaffected (Glut-2, Kir6.2, Rab3), stimulated (voltage-dependent Ca(2+) channel subunit alpha1D, CPT2, SUR2, rab9, syt13), or inhibited (syntaxin 7, secretogranin-2) by SREBP-1c inhibition. Correspondingly, SREBP-1c DN largely corrected decreases in the expression of the transcription factors Pdx-1 and MafA but did not affect the abnormalities in Pax6, Arx, hepatic nuclear factor-1alpha (HNF1alpha), HNF3beta/Forkhead box-a2 (Foxa2), inducible cyclic AMP early repressor (ICER), or transcription factor 7-like 2 (TCF7L2) expression observed in ZDF islets. We conclude that upregulation of SREBP-1c and mild increases in triglyceride content do not explain defective glucose-stimulated insulin secretion from ZDF rats. However, overexpression of SREBP-1c may contribute to enhanced basal insulin secretion in this model.


Assuntos
Perfilação da Expressão Gênica , Insulina/sangue , Ilhotas Pancreáticas/metabolismo , Obesidade/genética , Obesidade/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal/fisiologia , Cálcio/metabolismo , Insulina/metabolismo , Secreção de Insulina , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Zucker , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
15.
J Biol Chem ; 279(19): 19832-8, 2004 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-15004031

RESUMO

The orphan nuclear receptor CAR (NR1I3) has been characterized as a central component in the coordinate response to xenobiotic and endobiotic stress. In this study, we demonstrate that CAR plays a pivotal function in energy homeostasis and establish an unanticipated metabolic role for this nuclear receptor. Wild-type mice treated with the synthetic CAR agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) exhibited decreased serum concentration of the thyroid hormone (TH) thyroxine (T(4)). However, treatment of Car(-/-) mice with TCPOBOP failed to elicit these changes. To examine whether CAR played a role in the regulation of TH levels under physiological conditions, wild-type and Car(-/-) mice were fasted for 24 h, a process known to alter TH metabolism in mammals. As expected, the serum triiodothyronine and T(4) concentrations decreased in wild-type mice. However, triiodothyronine and T(4) levels in fasted Car(-/-) mice remained significantly higher than those in fasted wild-type animals. Concomitant with the changes in serum TH levels, both CAR agonist treatment and fasting induced the expression of CAR target genes (notably, Cyp2b10, Ugt1a1, Sultn, Sult1a1, and Sult2a1) in a receptor-dependent manner. Importantly, the Ugt1a1, Sultn, Sult1a1, and Sult2a1 genes encode enzymes that are capable of metabolizing TH. An attenuated reduction in TH levels during fasting, as observed in Car(-/-) mice, would be predicted to increase weight loss during caloric restriction. Indeed, when Car(-/-) animals were placed on a 40% caloric restriction diet for 12 weeks, Car(-/-) animals lost over twice as much weight as their wild-type littermates. Thus, CAR participates in the molecular mechanisms contributing to homeostatic resistance to weight loss. These data imply that CAR represents a novel therapeutic target to uncouple metabolic rate from food intake and has implications in obesity and its associated disorders.


Assuntos
Receptores Citoplasmáticos e Nucleares/fisiologia , Hormônios Tireóideos/metabolismo , Fatores de Transcrição/fisiologia , Animais , Northern Blotting , Restrição Calórica , Receptor Constitutivo de Androstano , DNA Complementar/metabolismo , Regulação da Expressão Gênica , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Químicos , Obesidade , Piridinas/farmacologia , Tiroxina/sangue , Fatores de Tempo , Tri-Iodotironina/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA